If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2-5=0
a = 4.9; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·4.9·(-5)
Δ = 98
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{98}=\sqrt{49*2}=\sqrt{49}*\sqrt{2}=7\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-7\sqrt{2}}{2*4.9}=\frac{0-7\sqrt{2}}{9.8} =-\frac{7\sqrt{2}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+7\sqrt{2}}{2*4.9}=\frac{0+7\sqrt{2}}{9.8} =\frac{7\sqrt{2}}{9.8} $
| -9-x=-14 | | (2x+6)=x^2 | | xx8=32 | | 12x-5=-43 | | 2x+10=3x÷3 | | |4w-7|=|4w-5| | | X+1÷3=x-2÷5 | | 0.4(3x-4)=-4 | | 4(3-x)+7x=4x+12x+2x | | 3(4-x)+6=4x+12-x | | 3(9-2)+a=2(a+1) | | 3a−6=-12= | | -15=-8z+1= | | 53=58-w/4 | | 3x/7=10+x/4 | | 53=(2X29)-w/4 | | 108=2(x+x) | | 2+5n=10+2 | | 5x-12-2x=9+4x | | x+2/3+x+5/2=1 | | 5+4(x+7)=122 | | 70-4y-14=0 | | −5+n=−8 | | 2a-5=a+3a | | -2t^2+3t-2=0 | | 0.4t=0.1+0.3t | | t=10(9)*2 | | 11=4p+2 | | 5x+4x(2x-x)=10 | | 11+16x=2*(9x+5) | | 2(4x+3)=10x-1 | | 5x+8+5x+25=180 |